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Abstract. We discuss the ground state and the small-amplitude excitations of a degenerate vapour of
fermionic atoms placed in two hyperfine states inside a spherical harmonic trap. An equations-of-motion
approach is set up to discuss the hydrodynamic dissipation processes from the interactions between the two
components of the fluid beyond mean-field theory and to emphasize analogies with spin dynamics and spin
diffusion in a homogeneous Fermi liquid. The conditions for the establishment of a collisional regime via
scattering against cold-atom impurities are analyzed. The equilibrium density profiles are then calculated
for a two-component vapour of 40K atoms: they are little modified by the interactions for presently relevant
values of the system parameters, but spatial separation of the two components will spontaneously arise as
the number of atoms in the trap is increased. The eigenmodes of collective oscillation in both the total
particle number density and the concentration density are evaluated analytically in the special case of a
symmetric two-component vapour in the collisional regime. The dispersion relation of the surface modes
for the total particle density reduces in this case to that of a one-component Fermi vapour, whereas the
frequencies of all other modes are shifted by the interactions.

PACS. 67.40.Db Quantum statistical theory; ground state, elementary excitations

1 Introduction

The experimental realization of Bose-Einstein condensa-
tion in confined vapours of alkali atoms [1–3] has given
impulse to the study of dilute quantal fluids, including
vapours of fermionic atoms. Magneto-optical confinement
of fermionic species has been reported for 6Li [4] and 40K
[5]. DeMarco et al. [6] have realized magnetic trapping of
40K atoms in two different hyperfine states corresponding
to |F = 9/2, Fz = 9/2〉 and |F = 9/2, Fz = 7/2〉, with the
possibility of varying the relative concentration of these
two components of the vapour up to selective removal of
one of them. Earlier experimental work on double Bose
condensates [7,8] and some of the related theoretical work
on the equilibrium state and on the excitation properties
of bosonic mixtures [9–14] may also be recalled at this
point.

The s-wave collisions between pairs of fermions in the
same hyperfine state are not allowed because of the Pauli
principle, so that to leading order only p-wave scatter-
ing and dipole-dipole magnetic interactions remain in a
one-component, spin-polarized Fermi vapour. These ef-
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fects are very weak at very low temperatures and the
vapour may be treated as an ideal Fermi gas [15–18]. In
the two-component vapours studied by DeMarco et al. [6],
however, s-wave scattering is operative between pairs of
40K atoms in different hyperfine states. They have thus
been able to measure the s-wave scattering length of 40K,
to observe directly the p-wave energy threshold law and
to evaporatively cool the vapour down to 5 µK. While the
s-wave scattering determined in this way for 40K is re-
pulsive (i.e. is described by a positive scattering length),
a negative scattering length for 6Li atoms holds promise
of achieving a superfluid state in a mixture of 6Li atoms
prepared in two hyperfine states [19]. The insurgence of
superfluidity may be revealed through the study of the
elementary excitations of the vapour [20–22].

In the present work we extend to two-component in-
teracting Fermi vapours in the normal (non-superfluid)
state our former study of the small-amplitude excitations
of density fluctuations in an ideal Fermi gas confined in
a harmonic trap at zero temperature [23]. We make use
of an equations-of-motion approach which is formulated
in full generality in Section 2 in order to stress the analo-
gies between the problem of present interest and that of
spin dynamics and spin diffusion in a homogeneous Fermi
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liquid in a given state of partial spin polarization [24,25].
The nature of the assumptions which are adopted in our
further calculations on confined Fermi vapours is made
more explicit and justified by this discussion.

In Section 3 we assume complete equilibrium for the
two-component vapour under spherical harmonic confine-
ment and evaluate the Thomas-Fermi ground-state den-
sities upon relating the components of the kinetic stress
tensor to the local densities by the ideal-gas formula. We
give specific attention to three different cases, i.e. (i) the
40K system studied by DeMarco et al. [6], (ii) a strong-
coupling regime in which the repulsive interactions be-
tween the two components of a symmetric vapour drive
their spatial separation, and (iii) a simplified description
of the weak-coupling regime in a symmetric vapour. By
a symmetric vapour as treated in (ii) and (iii) we mean
equal numbers of particles in the two components as well
as equal masses and equal confinements, as is relevant in
relation to the experiments of DeMarco et al. [6]. The form
obtained in (iii) for the density profile is used in Section 4
to obtain an analytic determination of the eigenvectors
and of the dispersion relation for both in-phase and out-
of-phase oscillations in a symmetric vapour in the colli-
sional regime. The role of the interactions in comparison
with the vibrational properties of an ideal one-component
Fermi gas is of main interest here. Finally, Section 5 gives
a brief summary of our main results and offers some con-
cluding remarks.

2 Generalized quantum hydrodynamics
in a two component Fermi fluid

We review in this section some general properties of the
dynamics of a two-component fluid with given equilibrium
densities nσ(r), σ being a component index that we shall
write as σ = (↑, ↓) to stress the analogy with the prob-
lem of spin dynamics in a partially spin-polarized electron
gas [25]. The Hamiltonian describing the fluid in the pres-
ence of external scalar potentials Vσ(r, t) is

H =
∑
σ

∫
d3rψ̂†σ(r, t)

[
− ~2

2mσ
∇2

r + Vσ(r, t)
]
ψ̂σ(r, t)

+
1
2

∑
σ,σ′

∫
d3r

∫
d3r′φσ,σ′(r, r′)

× ψ̂†σ(r, t)ψ̂†σ′(r
′, t)ψ̂σ′(r

′, t)ψ̂σ(r, t), (2.1)

where ψ̂σ(r, t) are the field operators and φσ,σ′(r, r′) the
interatomic potentials. Redistributions of population in
the two states are not allowed.

The equations of motions for the partial particle
densities nσ(r, t) are obtained by a standard procedure
(see e.g. [26]), involving (i) the derivation of the equa-
tion of motion for the density matrix ρσ(x,x′; t) =
〈ψ̂†σ(r, t)ψ̂σ(r, t)〉 from the Hamiltonian (2.1), and (ii) pro-
jection on the diagonal r = (x+x′)/2. Setting r′ = x−x′,

the result is

mσ
∂2nσ(r, t)

∂t2
= ∇(r)

α ∇
(r)
β Πσ

αβ(r, t)

+∇(r)
α

[
nσ(r, t)∇(r)

α V H
σ (r, t)

]
+
∑
σ′

∫
d3r′∇(r)

α

{[
∇(r)
α φσ,σ′(r, r′)

]
〈ρσ(r, t)ρσ′(r′, t)〉c

}
,

(2.2)

where the convention of summation over repeated Carte-
sian indices in the derivatives has been adopted. In equa-
tion (2.2) we have defined the kinetic stress tensors

Πσ
αβ(r, t) = − ~

2

mσ
∇(r′)
α ∇

(r′)
β ρσ(r− r′/2, r + r′/2; t)|r′=0

(2.3)

and the mean-field potentials

V H
σ (r, t) = Vσ(r, t)

+
∑
σ′

∫
d3r′φσ,σ′(r, r′)nσ′(r′, t). (2.4)

The non-mean-field effects are collected in the last term
on the RHS of equation (2.2), where ρσ(r, t) is the den-
sity operator and 〈ρσ(r, t)ρσ′(r′, t)〉c is the cluster part of
the density-density correlations. No assumption has as yet
been made on the temperature of the fluid.

The equilibrium equations determining the density
profiles nσ(r) are obtained from equation (2.2) by taking
the static limit. The equations of motion for the density
fluctuations δnσ(r, t) driven by weak external potentials
are then obtained by writing nσ(r, t) = nσ(r)+δnσ(r, t) in
equation (2.2) and by linearizing it. We shall go through
these steps in Sections 3 and 4 for a dilute two-component
Fermi vapour. Here we proceed to introduce the approx-
imations that we shall make in the dynamical treatment
of Section 4 by discussing the non-mean-field term in
equation (2.2).

2.1 Interdiffusion in the two component fluid

We evaluate in this section the role of collisions between
fluctuations in determining damping of collective motions
in the two-component fluid. As a preliminary we recall
that the linearized equations of motion for the partial
density fluctuations in the two-component fluid are con-
veniently transformed into those for the total particle
density fluctuation δn(r, t) and for the concentration fluc-
tuation δM(r, t) (the “magnetization” fluctuation in the
electron gas analogue) by taking simple linear combina-
tions of the two δnσ(r, t)’s (see e.g. [27]).

We consider first the dynamics of small fluctuations
around a homogeneous equilibrium state, where we can
appeal to the treatment given by Caccamo et al. [25]
for the evaluation of the interdiffusion (or “spin diffu-
sion”) coefficient. Momentum conservation ensures that
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the only non-vanishing inverse relaxation time in the hy-
drodynamic limit is the interdiffusion one, say τ−1

MM, which
is written as

τ−1
MM = nγM/(mn↑n↓) (2.5)

where n↑ and n↓ are the partial equilibrium densities, n =
n↑ + n↓ is the total density and we have assumed m =
m↑ = m↓. An exact expression for the quantity γM in
equation (2.5) is obtained from the non-mean-field term
in equation (2.2) in the appropriate hydrodynamic limit.
In the case of a central pair potential this reads

γM =
∫

d3r(k̂ ·∇)φ↑↓(r)
∂〈ρ↑(R)ρ↓(R + r)〉c

∂v↓
(2.6)

in a reference frame where the component ↑ is at rest
and the other component is flowing with a uniform drift
velocity v↓.

The Fourier transform of the non-equilibrium correla-
tion function in equation (2.6) is evaluated in a binary
collision approximation by the decoupling procedure used
by Baym [28] in treating the electrical resistance of metals
(see also Kadanoff and Baym [29]). Namely,

Im FT {〈ρ↑(R)ρ↓(R + r)〉c}k =
1
2
n~φ↑↓(k)

∫ ∞
−∞

dω
2π

[
S̃↑↑(k, ω)S̃↓↓(−k,−ω)

−S̃↑↑(−k,−ω)S̃↓↓(k, ω)
]
, (2.7)

where S̃σσ(k, ω) is the van Hove dynamic structure factor
of each component in the non-equilibrium state. For the
dilute Fermi fluid of present interest we can replace the
interaction potential in equation (2.7) by a contact inter-
action and S̃σσ(k, ω) by the ideal-gas value corresponding
to a displaced Fermi sphere for the ↓ component. Follow-
ing the lines of the calculation given in reference [25] and
taking for simplicity n↑ = n↓ in equation (2.5), we find to
leading order in the temperature T the result

τ−1
MM = (4πma2

↑↓E
2
F/3~3)(T/TF)2. (2.8)

Here, a↑↓ is the (triplet) scattering length,EF is the Fermi
energy and TF = EF/kB. This result could also be ob-
tained directly from equation (6.8) in reference [25] upon
replacing a screened Coulomb interaction by a contact in-
teraction.

The result given in equation (2.8) above for a homo-
geneous, two-component Fermi fluid can now be used for
an estimate of the role of collisions in a confined Fermi
fluid. We replace the Fermi energy EF by its local value,
which in the case of harmonic confinement in a spherical
trap characterized by a frequency ωf is

EF = (3N)1/3~ωf (2.9)

with N the total number of fermions. Hence,

(ωfτMM)−1 = (4π/31/3)(N1/3a↑↓/aho)2(T/TF)2 (2.10)

aho = (~/mωf)1/2 being the harmonic-oscillator length.
A similar result has been reported recently by Vichi and
Stringari [30] from a collision-integral approach.

In summary, because of momentum conservation the
damping processes in the hydrodynamic limit of a two-
component Fermi fluid are associated with collisions be-
tween the two components and affect only their relative
motions. These processes vanish quadratically with de-
creasing temperature because of Fermi statistics (see also
[24]). A collisional regime may nevertheless be established
by scattering against impurities (see for instance the work
of Ruckenstein and Lévy [31] on spin dynamics in para-
magnetic quantum fluids). We turn below to an estimate
of these collision processes in the normal Fermi fluid of
present interest.

2.2 Collisional regime via scattering against cold
impurity atoms

A collisional regime is established in the low-temperature
vapour for both in-phase and out-of-phase modes of mo-
tion of the two components when the inequality

ωτ � 1 (2.11)

holds, τ being the collision time for incoherent scattering
of fermions against impurities and ω being on the scale of
the trap frequency (ω ' ωf) for low-frequency modes.

For an estimate of the needed number Ns of scatterers
we take the impurities as cold atoms with a mean velocity
which is negligible relative to that of the fermions. We can
then write τ = l/v, l and v being the mean free path and
the average speed of a fermion. We have l = Σ−1, where
Σ is the macroscopic cross-section given by Σ = nsσ in
terms of the density ns of scatterers and of the cross-
section σ for fermion-impurity scattering (see for instance
Ref. [32]). Setting ns = Ns(4πa3

ho/3)−1 and σ = 4πa2
s

with as the fermion-impurity scattering length, and tak-
ing v = (3EF/4m)1/2 with EF given by equation (2.9), we
find

ωfτ =
(4/27)1/2

Ns(3N)1/6

(
aho

as

)2

. (2.12)

For illustrative purposes we consider the case of 39K or
41K bosonic impurities in the gas of 40K fermions studied
by DeMarco et al. [6] (N ' 107 and ωf ' 209 s−1, the
latter being the geometric mean of the radial and axial
frequencies in the experiment). From the known values of
the 39K–40K and 41K–40K scattering lengths (as ' 3600
and as ' 93 Bohr radii, respectively [6]) we find that a
number of 39K impurities of order Ns ' 10−6N , or of 41K
impurities of order Ns ' 10−3N , would suffice to verify
the inequality (2.11) with ω = ωf .

We conclude, therefore, that a collisional regime can
easily be established for the low-frequency excitations of
trapped Fermi vapours via the addition of suitable num-
bers of cold atomic impurities.



364 The European Physical Journal D

This regime reflects rather directly the quantal statis-
tics of the vapour [23] and we study it for the two-
component Fermi fluid in Section 4 below. Excitations
in the collisionless regime are of less interest, since they
mostly reflect the frequency of the trap [23,30].

3 Equilibrium density profiles in spherical
confinement

As already discussed in Section 1, we treat a dilute two-
component Fermi gas at zero temperature in which only
s-wave scattering between pairs of fermions in different
hyperfine states is operative. This coupling is described
by the parameter f = 4π~2a↑↓/m. In the experimentally
relevant situation the two populations have not only the
same mass but also essentially identical numbers and trap
frequencies. However, we shall impose the equality N↑ =
N↓ = N/2 only later below.

We take the gas as being statically in the equilibrium
state and dynamically in the collisional regime. As in our
earlier work [23], we relate the kinetic stress tensor of each
component to its local density by the homogeneous Fermi
gas formula,

Πσ
αβ(r, t) = δαβ

2
5
A[nσ(r, t)]5/3 (3.1)

where A = ~2(6π2)2/3/2m. Such a local density approxi-
mation assumes that the length scale for the variation of
the density profiles in space is large relative to the inverse
Fermi wave number k−1

f and to the length c/ω, with ω the
excitation frequency and c the velocity of sound propaga-
tion in the homogeneous fluid.

The equilibrium density profiles are then easily ob-
tained from the static limit of equation (2.2) in the mean-
field approximation. They have the Thomas-Fermi form,

nσ(r) = θ[εσ − Vσ(r)− fnσ̄(r)]

×
{
A−1[εσ − Vσ(r)− fnσ̄(r)]

}3/2
, (3.2)

where σ̄ denotes the component different from σ. In equa-
tion (3.2) Vσ(r) are the static confining potentials and εσ
are the chemical potentials, to be determined from the
condition Nσ =

∫
d3r nσ(r). We emphasize that the Nσ’s

are fixed, i.e. these equations do not allow for redistribu-
tions of population in the two hyperfine states.

In the same approximation the total energy of the
vapour is the sum of three terms, i.e. a kinetic energy
Ekin, a potential energy Eho and an interaction energy
Eint. These are

Ekin = (6π2)2/3 3~2

5m

∑
σ

∫
d3r [nσ(r)]5/3 , (3.3)

Eho =
∑
σ

∫
d3rnσ(r)Vσ(r) (3.4)

and

Eint = f

∫
d3rn↑(r)n↓(r). (3.5)

Fig. 1. Density profiles n↑(r) and n↓(r) (in units of a−3
ho ) versus

distance r from the centre of a spherical trap (in units of aho)
in a mixture of 107 fermions at composition N↑/N↓ = 3. The
long (short) dashed curves show the profiles corresponding to
an s-wave scattering length a↑↓ = 157aB (a↑↓ = −157aB),
relatively to the case of the ideal mixture (full curves).

These will be helpful in understanding the behaviour of
the vapour at strong coupling in Section 3.2.

3.1 An illustrative example for a weakly coupled 40K
vapour

Figure 1 reports the numerical results that we obtain from
equation (3.2) for the density profiles in a gas subject to
spherical harmonic confinement, with system parameters
chosen after the experiment of DeMarco et al. [6] (ωf =
(ω‖ω2

⊥)1/3 = 209 s−1, N = 107 and a↑↓ = 157 Bohr radii)
but at composition N↑/N↓ = 3. The cases a↑↓ = −157aB

and a↑↓ = 0 are also shown.
Evidently, the effects of the interactions are small in

this situation and very simple to understand: a repul-
sion (attraction) between the two components disfavours
(favours) their overlap in the central part of the trap.

3.2 Spatial separation of the two components
at strong coupling

We may expect that in the case of repulsive interactions,
with increasing coupling strength and still barring tran-
sitions between the two hyperfine levels as already noted
under equation (3.2), the gas will be led to diminish its to-
tal energy by reducing the spatial overlap between the two
components. Figure 2 shows how such symmetry breaking
occurs in a spherical trap, for N↑ = N↓ and under the
condition that overall spherical symmetry be maintained.
In this case one component is pushed away from the cen-
tre of the trap and the gas configuration becomes that
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Fig. 2. Density profiles (in units of a−3
ho ) versus distance r from the centre of a spherical trap (in units of aho) in a symmetric

mixture of fermions, at various values of the coupling strength parameter γ. In (a), the profiles of the two components are still
in complete overlap. Spatial symmetry breaking is first visible in (b). Separation of the two components (shown by full and
dashed curves) continues through (c) and (d).

of a central core enriched in one component and sur-
rounded by a spherical shell enriched in the other.

The symmetry breaking is driven by the competition
between the repulsive interaction energy, favouring spa-
tial separation of the components, and the kinetic energy
disfavouring localization. Evidently and in contrast to the
behaviour illustrated in Figure 2, a gas confined in an
axially symmetric trap will tend to reduce its energy via
relative shifts in the centres of the two clouds. A rich phase
diagram will ensue if “spin flips” between the two hyper-
fine states are also allowed. In the following we estimate
the critical coupling strength at which spatial symmetry
breaking occurs in terms of the number of fermions (or
alternatively of the a↑↓ scattering length) for the case il-
lustrated in Figure 2.

The four cases of density profiles illustrated in Figure 2
are labelled by a parameter γ, which is defined by

γ = αN1/6(a↑↓/aho) (3.6)

with α = 21/231/6(8192/2835π2) ' 0.5 [30]. In fact
the value of γ in equation (3.6) is obtained as γ =
[Eint/(Eho + Ekin)]0 when the ratio Eint/(Eho + Ekin) is
calculated from the density profile of the Fermi gas in the
absence of interactions. Figure 3 reports the true values
of Eint/(Eho + Ekin) against γ for the system described
in Figure 2. The (obvious) linear shape of this function
at weak couplings gently bends over with increasing cou-
pling, until an almost sharp break occurs at spatial sym-
metry breaking. This is emphasized in the inset in Figure 3
giving the derivative of Eint/(Eho + Ekin) with respect



366 The European Physical Journal D

0.48 0.5 0.52 0.54

-0.2

0

0.2

Fig. 3. The ratio of the interaction energy Eint to the sum
Eho+Ekin of the harmonic-oscillator and kinetic energies, plot-
ted against the coupling strength γ ' 0.5N1/6(a↑↓/aho) for a
symmetric mixture of fermions in spherical confinement. The
inset shows the first derivative of the same function.

to γ. We have checked that the same plot is obtained for
Eint/(Eho + Ekin) by varying a↑↓/aho at constant N and
by varying N at constant a↑↓/aho.

In the experiments of DeMarco et al. [6] on 40K with
N ' 107, the value of γ is γ ' 0.022 i.e. still very far from
the critical value γc ' 0.535 for the symmetry breaking il-
lustrated in Figures 2 and 3. The weak dependence of γ on
N in equation (3.6) implies that a number of 40K atoms
of order 1015 would have to be reached if all other sys-
tem parameters remain the same. This is experimentally
a stringent condition and therefore a parallel increase in
the ratio a↑↓/aho as suggested by equation (3.6) would be
necessary.

3.3 Approximate form of the density profile
for a symmetric vapour at weak coupling

In the case N↑ = N↓ the shape of the total density profile
n(r) = n↑(r) + n↓(r) at weak coupling is well represented
by a form which is suitable for the analytic study of the
eigenmodes of the gas that we report in Section 4 below.
From equation (3.2) the Thomas-Fermi density profile is

n(r) = 2A−3/2

[
εF −

1
2
mω2

f r
2 − f

2
n(r)

]3/2

(3.7)

for r ≤ RF, where RF = (2εF/mω2
f )1/2 and εF = ε↑ = ε↓

is the chemical potential of the mixture. At weak coupling
the profile (3.7) can be approximated by

n(r) =
8N
π2R3

F

(1− r2/R2
F)3/2θ(1− r2/R2

F) , (3.8)

Fig. 4. Illustrating the accuracy of the approximate form (3.8)
of the particle distribution 4πr2n(r) (dashed curves) relative
to the full Thomas-Fermi profile (full curves), for a symmetric
mixture of fermions in the two cases γ = ±0.022.

where εF and RF still are the true chemical potential and
the Fermi radius in the interacting mixture. The form (3.8)
is adjusted to preserve normalization to N as well as the
value of RF.

Figure 4 compares the approximate form (3.8) with the
correct Thomas-Fermi form (3.7) at γ = ±0.022 by plot-
ting the function 4πr2n(r). The phase-space factor 4πr2

masks the small differences that would be present in the
two forms of n(r) near the centre of the trap. On the other
hand, preserving the correct value of the Fermi radius in
the approximate form (3.8) is crucial in view of the bound-
ary conditions to be imposed in the determination of the
eigenmodes of the vapour.

As a final remark we notice that the profile in equa-
tion (3.8) has the same form as for an ideal one-component
Fermi gas [33]. This fact is crucial for the analytic treat-
ment of the dynamics of density fluctuations in a weakly
coupled symmetric mixture, that we give in the next sec-
tion.

4 Dynamics of density fluctuations

The equations of motions (2.2), after linearisation in the
partial density fluctuations and adopting (i) the mean-
field approximation (〈ρσ(r, t)ρσ′(r′, t)〉c = 0) and (ii) the
local density approximation for the kinetic stress tensor
(Eq. (3.1)), reduce to

m
∂2nσ(r)
∂t2

= ∇2

[
2
3
An2/3

σ (r)δnσ(r, t)
]

+∇{δnσ(r, t)∇[Vσ(r) + fnσ̄(r)]
+fnσ(r)∇δnσ̄(r, t)} (4.1)

at resonance (i.e. for Vσ(r, t) = Vσ(r)). With the help
of the equilibrium conditions (3.2), and taking Fourier
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transforms with respect to the time variable, equa-
tion (4.1) can be written as

−mω2δnσ(r, ω) =
1
3
A
[
2n2/3

σ (r)∇2 +∇(n2/3
σ (r)) · ∇ −∇2(n2/3

σ (r))
]
δnσ(r, ω)

+
{

[εσ̄ − Vσ̄(r)−An2/3
σ̄ (r)]∇2

−∇[Vσ̄(r) +An
2/3
σ̄ (r)] · ∇

}
δnσ̄(r, ω). (4.2)

Evidently, equation (4.2) describes a two-by-two eigen-
value problem for the coupled partial density fluctuations,
which is to be solved numerically in the general case.

The problem is considerably simplified in the case
of a symmetric mixture (m↑ = m↓, N↑ = N↓ and
V↑(r) = V↓(r), these conditions being well satisfied in the
experiments of DeMarco et al. [6]). In particular, as dis-
cussed by De Marco et al. [6] the condition V↑(r) = V↓(r)
is very well satisfied in their experiments. In this case
the dynamical equations (4.2) lead to separate equations
of motion for the total density fluctuations δn(r, ω) =
δn↑(r, ω) + δn↓(r, ω) and for the concentration fluctua-
tions δM(r, ω) = δn↑(r, ω) − δn↓(r, ω). The eigenvalue
equation for δn(r, ω) reads[
−3mω2 +A∇2

(
1
2
n(r)

)2/3
]
δn(r, ω) ={

3[εF − V (r)] −A
(

1
2
n(r)

)2/3
}
∇2δn(r, ω)

+∇
{

3[εF − V (r)] − 2A
(

1
2
n(r)

)2/3
}
∇δn(r, ω). (4.3)

Similarly, the eigenvalue equation for δM(r, ω) is

−mω2δM(r, ω) = ∇·
{

2
3
A(n(r)/2)2/3∇δM(r, ω)

−A
3

[∇(n(r)/2)2/3δM(r, ω)]
}

−∇ · {[εF − V (r) −A(n(r)/2)2/3]∇δM(r, ω)}. (4.4)

Equations (4.3, 4.4) can be solved analytically by the
technique used in our earlier work on the ideal one-
component Fermi gas [23], if the form (3.8) is adopted
for the equilibrium profile. As already discussed in
Section 3.3, equation (3.8) becomes accurate at small cou-
pling. We shall again impose that the solutions vanish con-
tinuously at the cloud boundary, as a consequence of Fermi
statistics giving a high cost in kinetic energy to rapid vari-
ations of the densities in space.

For both in-phase and out-of-phase motions of the two
components, the frequency eigenvalues depend on a pa-
rameter C given by

C = (3N)2/3(~ωf/εF)2. (4.5)

This quantity is the square of the ratio of the ideal Fermi
energy to the true Fermi energy and hence, in the case of
repulsive interactions where εF increases with the scat-
tering length, is limited from above by the inequality
C < 1. All the mathematical details of the solution of
equations (4.3, 4.4) are given in Appendix A. Here we re-
port only the main results.

4.1 Small oscillations of total density fluctuations

The eigenfunctions of the total density oscillations van-
ish at the Fermi radius r = RF provided C < 3, in a
way which depends on the parameter C and hence on the
strength of the interactions (see Appendix A.1 for their
detailed expressions).

The corresponding eigenfrequencies are labelled by
the angular momentum number l and by an integer n
representing the number of internal nodes in the density
fluctuation profile. The dispersion relation is

(ωnl/ωf)2 = l+ 2n+
n

3
(3− C)(2n+ 2l+ 1). (4.6)

The ideal Fermi gas limit corresponds to C = 1 and in this
case equation (4.6) yields back our earlier result [23]. More
generally, the dispersion relation (4.6) reduces to that of
the ideal Fermi gas only for the surface modes (i.e. for
n = 0). Instead, the frequencies of the modes with n > 0
are shifted by the interactions.

The above results are easily extended to evaluate the
low-frequency modes in an axially symmetric confinement
(see e.g. [23]). As discussed in Section 2, damping of these
modes will set in when ωτ ' 1 for scattering against cold-
atom impurities.

4.2 Small oscillations of concentration fluctuations

The eigenfunctions vanish at the Fermi radius only if
C > 3/5 (see Appendix A.2 for the details). The violation
of this inequality marks the breakdown of the present ap-
proximation in the case of repulsive interactions. Under
this restriction the dispersion relation for concentration
fluctuations having n internal nodes is

(ωnl/ωf)2 = (l + 2n)(2C − 1)

+
n

3
(5C − 3)(2n+ 2l+ 1). (4.7)

Of course, for both surface (n = 0) and bulk (n 6= 0)
modes these frequencies differ from those of density fluc-
tuations in the ideal one-component Fermi gas.

Damping of these modes will arise not only from scat-
tering against cold-atom impurities but also from thermal
excitations (see Sect. 2.1). A detailed discussion of the lat-
ter damping for the spin dipole excitation has been given
by Vichi and Stringari [30].
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5 Summary and concluding remarks

In summary, the focus of this work has been on two-
component mixtures of fermionic atoms in dilute-vapour
states and subject to spherical harmonic confinement at
zero temperature. The main motivation has come from the
experiments of DeMarco et al. [6] on vapours of 40K atoms
magnetically trapped in two different hyperfine states.

The generalized hydrodynamic equations of the mix-
ture have allowed us to discuss the damping mechanisms
from correlations between partial density fluctuations be-
yond mean field terms. Because of momentum conserva-
tion in a pure two-component Fermi fluid the dissipation
processes in the hydrodynamic limit are associated with
collisions between the two components and these vanish
quadratically with temperature because of Fermi statis-
tics. We have then discussed how a collisional regime may
nevertheless arise for both global and relative density fluc-
tuations at very low temperature from collisions of the
Fermi fluid against cold impurity atoms. We have seen
that the establishment of a collisional regime, in which
the dynamical behaviour of the fluid reflects the quantal
statistics, is not subject to especially severe restrictions
on the strength of the fermion-impurity scattering nor on
the number of impurities.

We have then evaluated ground-state properties and
small-amplitude excitations of such a two-component
Fermi fluid in a collisional regime. We have shown that,
whereas the role of the interactions in determining the
equilibrium density profiles is still very weak in the cases
experimentally studied so far, a rich phase diagram will
emerge as the coupling strength is increased and/or re-
distribution of the components between magnetic states
becomes allowed. The relevant coupling strength depends
in a simple manner on the number of fermions in the trap
and on the ratio of the scattering length to the harmonic-
oscillator length. Finally, we have shown how the problem
of small-amplitude oscillations of both the total particle
density and the concentration density in a weakly coupled
symmetric mixture is amenable to full analytic solution
in parallel with the analogous problem for an ideal Fermi
gas.

This work is supported by the Istituto Nazionale di Fisica della
Materia through the Advanced Research Project on BEC. One
of us (MA) wishes to thank the Abdus Salam International
Centre for Theoretical Physics for their hospitality during the
final stages of this work.

Appendix A: Solution of equations (4.3, 4.4)

We give in this Appendix the details of the analytic solu-
tion of the eigenvalue equations (4.3, 4.4) and the expres-
sions for their eigenfunctions.

A.1 Total density fluctuations

From equations (4.3, 3.8) we find{
[6(ω/ωf)2 + C∇2(x2)]

}
δn(x, ω)

+ (3− C)(1− x2)∇2δn(x, ω)

− (3− 2C)∇(x2) ·∇δn(x, ω) = 0 (A.1)

where x = r/RF. The solutions of equation (A.1) have the
form δn(x, ω) = xlF (x2)Y ml (θ, φ), because of spherical
symmetry. Setting x2 = y, we determine the function F (y)
from equation (A.1) by means of the Fuchs method for
solving an ordinary differential equation in a series form
around regular singular points [34]. This method sets

F (y) = (1− y)s
∞∑
k=0

ak(1− y)k (A.2)

and yields s = C/(3 − C) together with the recurrence
relation for the coefficients ak,

2(s+ k + 1)(s+ k − 3b+ 2)
ak+1

ak
=

− 3b(ω/ωf)2 − 3(3b− 1) + l(2− 3b)
+ (s+ k)[2(s+ k − 1) + 2l− 6b+ 7]. (A.3)

Here, b = (3 − C)−1. The eigenfunctions vanish at the
boundary for C < 3.

The eigenfrequencies are obtained from equation (A.3)
by asking that the solutions reduce to polynomials of de-
gree n+ s, i.e. an+1 = 0 for an integer n representing the
number of internal nodes of the density fluctuation pro-
file. This yields the dispersion relation reported in equa-
tion (4.6) of the main text.

A.2 Concentration fluctuations

From equations (4.4, 3.8) we get{
[6(ω/ωf)2 + C∇2(x2)]

}
δM(x, ω)

+ (5C − 3)(1− x2)∇2δM(x, ω)

+ (3− 4C)∇(x2) ·∇δM(x, ω) = 0. (A.4)

We look for solutions having the form δM(x, ω) =
xlG(x2)Y ml (θ, φ) and set x2 = y to find the differential
equation obeyed by the function G(y),

2(5C − 3)y(1− y)
d2G(y)

dy2

+ [(5C − 3)(2l + 3)(1− y) + 2y(3− 4C)]
dG(y)

dy
+
(
3(ω/ωf)2 + 3C + l(3− 4C)

)
G(y) = 0. (A.5)

Following again the Fuchs method we set

G(y) = (1− y)s
∞∑
k=0

ak(1− y)k (A.6)
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and from the indicial equation for equation (A.5) we find
s = C/(5C − 3). Therefore, the solutions will vanish at
the boundary of the cloud only if C > 3/5.

The coefficients of the series in equation (A.6) obey
the recurrence relation

2(s+ k + 1)[(s+ k)(5C − 3)− 3 + 4C]
ak+1

ak
=

− 3(ω/ωf)2 − [3C + l(3− 4C)]
+ (s+ k)[(5C − 3)(2s+ 2k + 2l + 1) + 2(4C − 3)].

(A.7)

By asking again for polynomial solutions, we obtain the
dispersion relation for concentration fluctuations having n
internal nodes as given in equation (4.7) of the main text.
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